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Abstract—Manipulation becomes harder when manipulators
are uncertain about the preferences of sincere voters. Elicita-
tion may communicate information, of sincere voters’ votes, to
a manipulator, allowing him to vote strategically. In this paper,
a multi-round elicitation process, of sincere voters’ preferences,
is derived that yields to an optimal manipulation with minimal
information elicited. Through in-depth experimental study, this
paper answers the question: How many candidates, per sincere
voter, are needed to be known for an optimal manipulation?
Probabilistic models such as IC and SP-IC are used to complete
preference profiles.

Keywords-manipulation; vote elicitation; partial preferences;
uncertainty.

I. INTRODUCTION

Voting is a standard mechanism of reaching a joint de-

cision. In this context, voting rules are used to aggregate

the voters’ preferences over a set of candidates standing for

election to make a socially desirable decision. A significant

problem in social choice is that there is generally one

or more voters that can obtain a more desirable outcome

by misreporting their preferences. This is called manipu-
lation or strategic voting. Manipulation is an undesirable

phenomenon leading to fairness issues. A seminal negative

result stated by Gibbard-Satterthwaite [1], [2], shows that

voting rules that are not manipulable do not exist.

Analysis of manipulation suffers from two significant

deficiencies. The first one is related to the assumption behind

manipulator’s knowledge. In fact, most of existing work [3],

[4], is confined to case in which manipulators know exactly

the non-manipulators’ votes. Clearly, this assumption does

not cope with real world situations where manipulators are

generally uncertain about sincere voters’ votes, or even com-

pletely ignorant about their votes. Recently, this assumption

was relaxed in [5], where authors extended coalitional ma-

nipulation to incomplete knowledge. Second, manipulation

analysis underlines the probability of manipulation, ignoring

its impact on social welfare. However, characterizing the

impact of a manipulating coalition’s action only in terms of

its probability of succeeding can sometimes be ambiguous,

leading to a possible gap between the social welfare of the

optimal alternative and the social welfare of the one that is

ultimately elected under manipulation. To the best of our

knowledge, the unique work that considers the impact of

manipulation on social welfare is [5]. This paper proposes

to overcome these two problems by studying coalitional

manipulation problem where the manipulators are uncertain

about the non-manipulators’ votes, and assessing the loss on

social welfare.

Another important problem, related to manipulators’

knowledge under uncertainty, is the amount of information

revealed by sincere voters. In this context, eliciting the

pertinent information from sincere voters, allows the manip-

ulator to ensure the victory of a specific candidate. While

preference elicitation and manipulation are closely related,

unfortunately, previous investigations have mainly focused

on each field separately. This paper emphasizes the con-

nection between strategic voting and preference elicitation.

To this end, we consider preference elicitation to determine

when to stop eliciting information from sincere voters as

the manipulation becomes tractable. We propose a new

manipulation strategy that yields to an optimal manipulation

by solving the restricted manipulators’ knowledge using a

multi-round elicitation process. Uncertainty regarding the

voter preferences is facilitated by using probabilistic pref-

erence models such as IC and SP-IC. This paper answers

the question: How many candidates, per sincere voter, are
needed to be known for a successful manipulation?

This paper is organized as follows: In Section 2, we give

some basic background on voting procedures and manipula-

tion model. In Section 3, after briefly discussing deficiencies

in preference elicitation, we propose a new multi-round

elicitation process that allows the voters to incrementally

send their preferences, converging to a winning candidate.

In Section 4, we describe a new manipulation strategy,

which solves manipulators’ restricted knowledge, using the

proposed multi-round elicitation process. Finally, Section 5

is dedicated to the experimental study.

II. BACKGROUND ON VOTING PROCEDURES AND

MANIPULATION

A. Voting procedures

We define a partial vote by an election E′ = (N,A,Π)
where: N = {1, ..., n}, is the set of voters; A = {a, b, ...},
is the set of candidates such that |A| = m; and Π =
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{π1, ..., πn}, is the partial preference profile of voters in N .

Let πi denote the partial preference order of voter i. Voter

i’s preferences are presented by a partial ranking �i over

A. When a �i b for some a, b ∈ A, said that voter i prefers

a to b.
A completion of πi is any vote �i that extends πi. Let

C(πi) denote the set of completions of πi , i.e. the set

of all complete votes �i that extends πi. Let C(Π) =
C(π1)×...×C(πn) be the set of completions of Π. We refer

to E = (N,A,�N ), an election obtained after completion,

where �N denote the complete voters’ votes. A voting
rule is a procedure for making a choice from the set of

candidates. Formally, given an election E = (N,A,�N ) as

input, a voting rule f is a function f : E → S that outputs a

non-empty subset S ⊆ A. The elements of S are called the

winners of the election E under f . If |f(E)| > 1 for any

election E, the mapping f is called a voting correspondence.

A positional scoring function s : {1, ...,m} �→ �≥0 maps

ranks onto scores such that s1 ≥ ... ≥ sm defines a scoring

rule over a set of candidates of size m. A candidate receives

sj points from each voter who ranks him in the jth position,

and the score of a candidate is the total number of points she

receives from all voters. In the remaining, we focus on the

Borda score to evaluate the outcome of the election where

s = (m− 1,m− 2, ..., 1, 0).

B. Manipulation

According to [1], [2], manipulation refers to one or

more voters that may declare preferences, that are not their

true ones, with the aim of obtaining a better outcome for

themselves. Formally, in a coalitional manipulation problem,

the N voters are divided into two groups, the manipulators

and the non-manipulators (aka. sincere voters). We define

our manipulation problem as follows: For any voting rule f ,

an instance I = (H,M,A,�N , p) is given by an election

E = (N,A,�N ) where: H = {1, ..., h} is the set of sincere
voters; M = {1, ..., (n − h)} is the set of manipulators;

A = {a, b, ...} is the set of candidates where |A| = m;

�N= (�1, ...,�h) presents the preference profile of voters

in H; and a distinguished candidate p ∈ A. The goal

is to answer whether the M manipulators, knowing the

preferences of the H sincere voters, can provide a preference

such that p will be chosen by f .

Studying manipulation problem under incompleteness or

uncertainty regarding the votes of sincere voters has received

little attention. In fact, most of existing work [3], [4] assume

that the manipulating coalition has a complete knowledge

of the sincere voters’ votes, however, this assumption is

unrealistic in the real world setting where manipulators

have rarely access to such information. In this paper, we

relax this assumption by studying unweighted constructive

coalitional manipulation problem, in the setting in which

all manipulators have identical preferences, and they are

uncertain about the non-manipulators’ votes. We represent

this uncertainty by a top-k most preferred candidates over

the sincere voters’ votes.

The impact of manipulation on social welfare provides a

different analysis of manipulability of several voting rules.

While the probability of manipulation can inform us on

the chances given to manipulators to change the outcome

of the election, however, alternatives with higher success

probability can have an undesirable impact on social welfare

causing less societal satisfaction. In this context, social

welfare for alternative p chosen by the manipulators must

be close to that of the optimal (non-manipulated) alternative,

which in turn means that the damage in social welfare caused

by manipulation will itself be limited. Formally, we refer to

SW (s, s∗) as the difference between the true score s∗ and

the approximate score s associated to a set of candidates

under a given scoring rule and propose analyzing rules in

this light. In this paper, we consider both the probability of

manipulation and its impact on social welfare, by computing

the optimal manipulation strategy which refers to minimize

the loss on social welfare and ensure a successful manipula-

tion where manipulators increase their chances of winning.

Characterizing manipulating coalition’s action by studying

the impact of manipulation on social welfare represents a

solution concept to minimize manipulation’s side effect. In a

different direction, manipulation’s analysis tends to focus on

the problem of equilibrium selection (e.g. Nash Equilibrium)

as a potential solution concept for preference aggregation

scenarios [6].

III. VOTE ELICITATION

Efficient vote elicitation concerns eliciting only pertinent

information from the voter because expressing complete

preferences can be arduous. In this context, top-k voting is

an especially natural form of partial vote elicitation in which

only length k prefixes of rankings are elicited. Authors in [7]

show that eliciting partial order preferences from the voters

can allow the voting protocol to determine the outcome well

before all of the preferences have been elicited. In fact,

much work has mainly focused on theoretical analysis of

preference elicitation, reporting the upper and lower bounds

of the required communication with the voters [8]. While

these analyses are efficient to determine the right outcome,

however, they may sometimes elicit more information than

necessary in practice. Therefore, preference elicitation that

are driven by more practical considerations are required.

However, to the best of our knowledge, only two studies

propose practical algorithms for effective vote elicitation [9],

[10], still the study of practical frameworks for elicitation

has received little attention.

A. Probabilistic elicitation models

Given partial information about voters’ preferences, sev-

eral approaches can be used to select the winner of an

election [11]. Within these approaches, we can mention
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probabilistic ranking models, which require the specification

of some prior distribution over voter preferences. The most

adopted probabilistic model in social choice, is impartial
culture model (IC), which assumes the preference of any

voter are drawn from the uniform distribution over the set

of candidates. A related model is the impartial anonymous
culture (IAC), in which each voting situation is equally

likely.

Among probabilistic analysis used in social choice, there

is also an increasing focus on identifying tractable special

cases using domain restrictions [12]. One of the most com-

mon domain restriction considered in social choice theory

is that of single peaked preferences. The single peaked
impartial culture (SP -IC) model generates singled peaked

votes, consistent with a given social axis, uniformly from the

IC model. A variety of other models have been proposed

that reflect different interpretations of the ranking process

(e.g., Plackett-Luce, Bradley-Terry, Mallows, etc.). In this

paper, we investigate IC and SP -IC models empirically

below.

B. Multi-round vote elicitation process

We propose a multi-round elicitation process, in the form

of top-k preferences, interested in: (1) allowing the voter

to incrementally send his partial preferences in rounds, and

(2) aiming to reduce the number of interactions with the

voter, as well as the amount of information elicited, to

ensure that either a winning or a high quality candidate can

be determined with high probability. The key idea is that

the voters incrementally send their preferences in rounds,

one preference each round, in a decreasing order of their

preferred candidates. After each round, the voters wait for

the voting center to decide whether sufficient information

has been received to determine a winner, or additional

voters’ preferred candidates are needed to be sent in the

next round. In each round the response query of each voter

is added to all his previous votes and the center evaluates

the outcome of the election using a specific scoring rule, and

based on the available information. The multi-round process

stops eliciting preferences once the approximate winner is

determined with high probability, and from that point the

voters no longer send preference values.

Formally, we refer to a query by a single request for

information from a voter. We consider type of query in

the form of top-k most preferred candidates (e.g., who is
your top-k preferred candidate?). Given a particular class

of queries Q, a multi-round voting protocol selects, at

each round, a subset of voters, and one query per selected

voter. Let It−1 be the information set available at round t.
It−1 represents the voters’ responses to queries for rounds

t ∈ {1, ..., (t−1)}, where the elicitation of top-k preferences

is simulated for k ∈ {1, ..., (m − 1)}; allowing the voters

to rank k = m − 1 candidates in the worst case, since the

complete order ranking is not considered. The information

set at round t is added to all his previous responses. Let πt−1

be a partial profile of top-k preferred candidates for each

voter. Then, given an election E′ = (N,A,Π), we propose

a protocol based on three functions:

1) Querying function ψ, represents a sequence of map-

pings ψt : Π �−→ (N �−→ Q), selecting for each voter

a single query at stage t given the current information

set It−1.

2) Completion function C : Π �−→ V , given a partial

profile Π, C (Π) is the set of consistent extensions of

Π to obtain a full ranking profile. The output of C, is

a complete ranking preference profile V over the set

of candidates. Probabilistic models are used to deal

with uncertainty regarding the voter preference and to

complete the profile.

3) Winner selection function ω : V �−→ A, where

ω (V ) denotes the approximate winner under a given

complete profile V . Borda scoring rule is used to

evaluate the outcome given the voters’ complete votes

V , and to determine the approximate winner over the

set of candidates A. If the approximate winner is far

from the true one, the protocol proceeds to round

t+1, otherwise the protocol terminates with the chosen

winner at round t.

Given a protocol Ω = (ψ,C, ω), in order to evaluate

the effectiveness of the multi-round elicitation process, we

propose to use three properties, namely:

• Quality of the winner: Determine the quality of the

approximate winner of the election, using partial in-

formation elicited in each round. While the Borda rule

is used, the output of Ω is a scoring vector over the set

of candidates. The approximate winner is evaluated by

considering how far from the true one could be.

• Amount of elicited information: Determine the neces-

sary amount of elicited information from voters in each

round, in order to ensure a high winner quality. The

amount of information will be measured by counting

the number of k preference elicited in each round.

• Number of rounds: Determine the number of rounds

needed, in order to obtain a high quality of the winner.

Algorithm 1 presents the multi-round elicitation process.

The querying function is performed in lines (1-5) where

partial preference orders are presented in πi
k, which denotes

the top-k ranking of voter i over a set of m-1 candidates.

ψt contains the partial profile elicited from voters in each

round. The response query of each voter is added to all his

previous votes in It. The completion function is presented in

line 6 where the partial profile is extended to a complete one

V . Then, the winner selection function is introduced in lines

(7-10) where the Borda rule is applied. If the approximate

winner ω (V ), obtained with the predicted profile V , is far

from the true one ω∗; then, the algorithm proceeds to the

next round (line 8) by eliciting the next most preferred
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candidate of each voter (line 9); otherwise, the approximate

winner is declared the winner of the election (line 10).

Algorithm 1. Multi-round elicitation process

Input: N voters, m candidates, Top-k votes:(
π1

k, ..., πn
k
)

Output: ω (V ) (approximate winner)
Initialization: t=1, k=1, It= ∅, ω∗ (true
winner)

1: while ( (ω (V ) 
= ω∗) OR (t < m) ) do
2: for i ∈ N do
3: ψt.add

(
πi

k
)

4: end for
5: It.add (ψt)
6: V ← C (It)
7: if (ω (V ) 
= ω∗) then
8: t = t+ 1
9: k = k + 1

10: else
return ω (V )

11: end if
12: end while

IV. NEW MANIPULATION MODEL

In this section, we propose to study the connection be-

tween strategic voting and preference elicitation. Elicitation

may reveal information about honest voters’ votes to a

manipulator, which allows him to vote strategically. To this

end, we introduce a new manipulation strategy with uncer-
tain knowledge, to solve restricted manipulators’ knowledge,

regarding the non-manipulators’ votes, using the proposed

multi-round elicitation process. In this context, the multi-

round elicitation process will elicit the top-k preferences

of non-manipulators. This amount of information elicited

presents the manipulators’ knowledge, which will allow

them to change the outcome to their favor. Using this new

approach, we aim to:

• Determine the minimal value of k needed to be known

by the manipulators to achieve their goal, with the

minimal number of rounds.

• Decide when to stop eliciting sincere voters’ prefer-

ences, as an optimal manipulation is guaranteed.

While manipulation and elicitation are two closely related

fields, unfortunately, previous investigations have mainly fo-

cused on each field separately. To the best of our knowledge,

only two studies introduce the connection between them [7],

[12], but no practical process has been proposed. The new
manipulation strategy with uncertain knowledge will allow

us to overcome existing weaknesses. This new approach

uses the three functions defined in the multi-round elicitation

process, namely: querying function, completion function and

winner selection function; in order to elicit preferences from

sincere voters and to determine the outcome of the election

by considering the manipulators’ votes.

  

Sincere voters 

New data set 

Manipulators Sincererrrreeee vovv ters Maninipupuppuppuupp latorsl

Querying function 

Incomplete profile 
of sincere voters 

Completion function 

Complete profile 
of sincere voters  

Manipulators’ 
preferred candidate 

Winner selection 
function 

Final score vector 

Figure 1. Proposed approach description

The whole process is illustrated in Figure 1 and proceeds

as follows: In the first round (t=1), the querying function will

elicit top-1 sincere voters’ preferences. Each sincere voter

expresses his most preferred candidate over the available

ones. Then, the information set elicited is sent to the manip-

ulators, which constitutes their knowledge at the first round.

Based on these incomplete preferences, the manipulators

will cast a vote that makes their preferred candidate p win

the election. In order to complete the sincere votes, we

consider an internal process where the completion function
is performed. In this step, sincere votes are extended using

probabilistic models. A complete preference profile V over

the whole set of candidates is provided in output. Now,

given the complete predicted profile V and the manipulators’

desired candidate p, gathered on the new data set; the winner
selection function is performed, where Borda rule is applied.

The output of this step is an approximate winner ω (V )
which will be compared to the true one ω∗, in order to

evaluate the impact of manipulation i.e. verify if the manip-

ulators have succeeded to change the outcome of the election

to their favor. In order to evaluate the performance of the

protocol to elicit the minimal value of k from the sincere

voters, we measure both, the probability of manipulation and

its impact on social welfare. If no optimal manipulation is

found, the process proceeds to the next round by eliciting

the next most preferred candidate of the sincere voters, until

an optimal strategy is detected.

The use of the multi-round elicitation process on the new

manipulation strategy, will allow us to investigate the rela-

tion between the amount of information revealed by sincere

762763763



voters and the probability of manipulation; by studying how

a reduction or increase in uncertainty may change a strategic

vote. To this end, our goal is to answer the question: How
many candidates, per sincere voter, are needed to be known
for an optimal manipulation?

V. EXPERIMENTAL STUDY

To explore the effectiveness of the proposed approach,

we run a suit of experiments with top-k preference distri-

butions, as well as real data sets. Our interest is two-folds:

(i) evaluate the effectiveness of the multi-round elicitation

process for determining the optimal value of k with quality

guarantees. We focus on IC and SP -IC models to complete

the preference order, however, our framework is not limited

to such models; (ii) evaluate the performance of the new

manipulation strategy by measuring both the probability of

manipulation and its impact on social welfare. Experiments

are performed using two data sets, namely: Sushi data
[13] from Preflib [14], having 10 alternatives and 5000

rankings. Since this latter is not a single peaked data, we

have randomly generated a data set so called Ran-Gen data
with 10 alternatives and 1000 voters having a single peaked

preferences.

In order to test the performance of the multi-round elic-

itation process, our first set of experiments consider Sushi
data (resp. Ran-Gen data), with 10 preference profiles where

in each profile we simulate the elicitation of top-k prefer-

ence orders k ∈ {1, ..., 10} with N=5000 rankings (resp.

N=1000). Figure 2 summarizes the experiments performed

with Sushi data, by showing, in plot (a) (resp. (b)), the

margin of victory of 7 preference profiles, by increasing

the number k of alternatives elicited k ∈ {1, ..., 7} in each

profile; using IC model (resp. SP -IC). The horizontal axis

presents the set of different candidates, and the vertical axis

shows the score associated to each one of them. The peaks

in each preference profile, in a decreasing order, present

the order of the winners using the Borda rule. For instance,

k = 1 means that in the first profile, top-1 queries are elicited

from each voter over a set of 10 alternatives. We refer to

k = 10, by the complete profile where top-10 alternatives

are elicited, which will be used to evaluate the quality of

the winner.

Clearly, under IC model (plot a), the curves’ shape is

the same, which means that even with partial preferences,

the scoring rule ranks the alternatives, almost, in the same

order. Results with Sushi data using IC model, show that it

is always possible to determine the winner with incomplete

information i.e. the highest peak with different values of k,

is always located in alternative 8 which represents the true

winner (compared to k = 10). More precisely, top-1 queries

are sufficient to determine an approximate winner with high

quality. More interestingly, when we consider the rank of

different alternatives, results suggest that eliciting prefer-

ences from voters in 2 rounds (top-2), is always sufficient
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Figure 2. (a) Sushi results with IC model, (b) Sushi results with SP -IC,
(c) Probability of the approximate winner quality.

to guarantee not only a correct outcome, but also a correct

ranking of 4/10 alternatives, which minimize the damage on

social welfare. Top-4 queries are a very good approximate

to rank all alternatives in the same order. Results with Sushi
data using SP -IC model (plot b), show that the curves’

shape is not always the same, which means that the margin

between the different scores is sparse. For small value of

k = 1, the approximate winner deviates from the true one

i.e. with k = 1, the approximate winner is alternative 5 while

the true winner is alternative 8. Results with SP -IC model,

suggest that, top-2 queries, are usually enough to obtain the

desired outcome. However, top-6 queries are sufficient to

guarantee less damage on social welfare.

To conclude, the IC model performs well with Sushi data

with small value of k = 1 than the SP -IC model. This

is shown in the 3rd plot (plot c), where the probability of
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deviation of the true ranking is of 27% using IC model

against 34% with SP -IC model. With top-3 queries, the

true ranking is determined in the most cases with a slight

deviation of 17%. Intuitively, while increasing the values of

k, the process converges to the correct prediction, and is

near perfect with top-3 using the two models (deviation of

15%).

Similarly to the above experiments, Figure 3 summarizes

experiments performed on Ran-Gen data. The use of the IC
model on this data (plot a), shows that the true winner is

always determined except with k = 2 i.e. with top-2 queries,

the approximate winner is alternative 6 while the true one is

the alternative 5. The curves’ shape, with different values of

k, is almost the same except with k = 1-2 i.e. an additional

alternative (top-3 queries) is sufficient to determine, not

only the true winner, but also a correct ranking of different

alternatives. A very good approximation with less damage

on social welfare, is obtained with top-4 queries. Results

with SP -IC are even more illuminating (plot b), where the

curves’ shape is always the same with all values of k i.e. not

only the approximate winner is determined with high quality,

but also the scores are the same with any incomplete profile.

In other words, any value of k ∈ {1, ..., 9}, is sufficient to

determine the true winner with the lowest loss on social

welfare, which shows the performance of SP -IC model

with a single peaked data set. This is also clear in (plot c),
where the probability of deviation from the true ranking with

SP -IC model is evaluated to 14% with all the incomplete

preferences k ∈ {1, ...7} i.e. a negligible impact on social

welfare. However, with the IC model, the probability of

deviation from the true ranking is evaluated to 30% with

top-1 queries and decreases by increasing the number of

queries.

Now, let us turn our attention to the normal form of the

distribution generated by Ran-Gen data. Since this latter

is a single peaked data, our results suggest that using

IC and SP -IC models, to complete an original single

peaked data, generate always a single peaked vote able

to determine the correct ranking of alternatives in almost

all cases. For instance, plots (a) and (b), present a local

maximum on the most preferred alternative of the voters i.e.

alternatives drew along the horizontal axis present a local

maximum on alternative 4 which represents the winner with

the highest score; and then the curve goes down with the

other alternatives in a decreasing order.

In order to test the effectiveness of the new manipulation

approach, we measure both the probability of manipulation

and its impact on social welfare. In this context, our second

set of experiments consider Sushi data by drawing 10

profiles such that, each one of them contains top-k preference

orders k ∈ {1, ..., 10}. We vary the number of manipulators

M ∈ {750, 1000} with N= 5000 voters in each profile;

where M= 750 manipulators (resp. M= 1000), represents

15% (resp. 20%) of the total number of voters. We use
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Figure 3. (a) Ran-Gen with IC model, (b) Ran-Gen results with SP -IC,
(c) Probability of the approximate winner quality.

the IC model to complete non-manipulators’ votes, since

its effectiveness performed with Sushi data in the above

experiments. Since manipulability varies greatly with the

preferred alternative chosen by the manipulators, we show

results for the alternatives whose expected ranks in different

profiles are second, third, and fourth i.e. P=2, P=3, P=4.

Figure 4 shows results of three different manipulators’

strategies with M=750. In plot (a) (resp. plot (b), plot (c)),
the manipulators’ preferred alternative is the one whose

expected rank in different profiles is second, P=2 (resp.

P=3, P=4). As in the above experiments, the horizontal

axis presents the different alternatives and the vertical axis

illustrates the score associated to each one. We show results

of 5 incomplete preference profiles by varying the value of

k ∈ {1, ..., 5} in each profile. For instance, in plot (a), K=5
means that the manipulators know only top-5 preferences of
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sincere voters; based on these incomplete information, their

aim is to ensure the victory of the alternative whose expected

rank is second (P=2). In order to evaluate the effectiveness

of different manipulators’ strategies; in each plot, ’opt’ refers

to the true ranking of alternatives, with complete preferences

and without manipulation, which is: 8, 3, 1, 6, 2, 5, 4, 9,
7, 10. The different ranks are presented by the peaks in the

graph.

Figure 4. (a) Manipulation strategy with P=2 and M = 750, (b)
Manipulation strategy with P=3 and M = 750, and (c) Manipulation
strategy with P=4 and M = 750

Interesting results are presented when we consider M=750
manipulators (Figure 4) with top-1 queries, where, with

different manipulation strategies and knowing only one

preference of the non-manipulators’ votes, the manipulators

can ensure the victory of their most preferred alternative

i.e. when P=2 and with top-1 queries, the winner is can-

didate 3 which represents the manipulators’ desired alter-

native. However, an additional knowledge about the non-

manipulators’ votes (top-2 queries), allows the manipulators

to only increase their chances of winning, by raising their

most preferred alternative to the second rank. For instance,

when the manipulators strategy is P=3 (plot c), with top-
1 queries, the winner is alternative 1; however, with top-2,
top-3 and top-4 queries, the winner is always the alternative

8 (true winner without manipulation), while alternative 1 is

ranked second. Results with M=750 manipulators, suggest

that an optimal manipulation is derived when the manipula-

tors have restricted knowledge i.e. with top-1 queries of the

non-manipulators’ votes, the chances of the manipulators’

preferred alternative increase by ranking him first, while the

true winner is ranked second; which minimize the loss on

social welfare.

In order to evaluate the effectiveness of the multi-round

elicitation process, we propose to compare our results with

those obtained in [10], where authors theoretically outlined a

general framework for the design of a multi-round elicitation

protocol, however they have empirically dealt only with one-

round elicitation of top-k candidates. In this context, authors

have estimated the expected minimax regret using the MMR
solution in order to determine the winners given partial

profile. As in our study, they have used Borda scoring rule

to evaluate the outcome of the election. Their results with

Sushi data suggest that with top-5 queries one can usually

find the true winner. While our goal is to minimize the

information elicited as well as the number of rounds, results

are more efficient when we consider probabilistic models

to complete profiles. Our results suggest that top-1 (resp.

top-2) queries, are sufficient to determine the correct winner

in one round (resp. 2 rounds), using the IC (resp. SP -IC)

probabilistic model. More interesting results are obtained

with single peaked data, where the winner of the election

is always determined with any value of k, using the two

probabilistic models.

More recent work proposed by authors in [15], addressing

the problem of determining the outcome of an election with

only partial information. In this context, authors propose

a novel application with stronger connections to machine

learning, where they used classification algorithms to predict

the missing preferences of a ballot via latent patterns in

the partial information provided. To this end, an imputation

based approach to social choice was derived relying on the

ability of machine learning algorithms to provide reasonable

imputations of user’s preferences in order to deal with

incompleteness. As in this work, authors consider partial

elicitation process in the form of top-k style preferences

and Borda scoring rule to select the winner. However, our

work differs from this recent context insofar as it uses

conventional social choice techniques and recommends a

particular elicitation strategy for voters i.e. the voter is asked
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to incrementally send his partial preferences in rounds, one

preference each round; but instead works with the partial

preferences to achieve the same goal.

While the proposed approach in [15] provides good results

with incomplete data expressed by a low error rate using the

SVM classifier, however, there are a number of reasons to

suppose that our multi-round vote elicitation process should

be preferred, at least in some situations. Chief among them

is that in the case where the ballots have exceptionally

high incompleteness (e.g. voters provide only top-1 pref-

erences), classification becomes a difficult problem with

the imputation method requiring additional refinement to

perform well, thus, the correct winner is not predicted. In

the similar situation, our results show that even with high

incompleteness; not only the correct winner is determined

but also the damage on social welfare is limited, which

guarantee a high approximation of the entire ordering using

a scoring rule.

To the best of our knowledge, this is the first work that

investigates the relation between the amount of information

needed to be known by the manipulators and the success of

manipulation, empirically.

VI. CONCLUSION

This paper has addressed the problem of uncertainty

in manipulators’ knowledge, using an efficient multi-round

elicitation process. Our contribution is of two-fold: First,

we propose a multi-round elicitation process for choosing

the ideal threshold k with the minimal number of rounds.

Second, we propose a new manipulation strategy with uncer-
tain knowledge, where the incomplete manipulators’ knowl-

edge is solved using the proposed multi-round elicitation

process. Experiments with two different data sets prove the

practical viability and advantages of the proposed multi-

round elicitation process. Interesting results are derived

when we consider a single peaked data, where the winner is

determined with high quality using only top-1 preferences

from voters. Moreover, experiments performed with the new

manipulation strategy indicate that our approach is quite

tractable. Specifically, it allows the determination of an

optimal manipulation using only a small fraction of sincere

voters’ preferences and with less impact on social welfare.

Furthermore, results show that with restricted knowledge,

the manipulators are always able to change the outcome to

their favor, however when we increase the number of queries

elicited, the manipulators can only raise the rank of their

preferred candidate to the second place.

For future research, we are interested in examining the

implication of single-peakedness data on our manipulation

strategy i.e. study if it is sufficient to eliminate the possibility

of profitable manipulation by using single peaked prefer-

ences. Moreover, extending our analysis to a richer class of

probabilistic models, such as the Mallows model [16], is an

important next step, by considering the appropriate form of

queries that fits this model. For example, Irish electoral data

is not adopted to such model since it is single peaked.
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